Seminare
Seminare

Live-Online: Machine Learning Engineering on AWS

Webinar - Haufe Akademie GmbH & Co. KG

This course is designed for ML professionals seeking to learn machine learning engineering on AWS. Participants learn to build, deploy, orchestrate, and operationalize ML solutions at scale.
Termin Ort Preis*
23.02.2026- 25.02.2026 online 2.368,10 €
27.04.2026- 29.04.2026 online 2.368,10 €
28.09.2026- 30.09.2026 online 2.368,10 €
*Alle Preise verstehen sich inkl. MwSt.

Detaillierte Informationen zum Seminar

Inhalte:

Students will gain practical experience using AWS services such as Amazon SageMaker AI and analytics tools such as Amazon EMR to develop robust, scalable, and production-ready machine learning applications.


 


Course outline


Day 1 


Module 0: Course Introduction


Module 1: Introduction to Machine Learning (ML) on AWS


  • Topic A: Introduction to ML
  • Topic B: Amazon SageMaker AI
  • Topic C: Responsible ML


 


Module 2: Analyzing Machine Learning (ML) Challenges


  • Topic A: Evaluating ML business challenges
  • Topic B: ML training approaches
  • Topic C: ML training algorithms


 


Module 3: Data Processing for Machine Learning (ML)


  • Topic A: Data preparation and types
  • Topic B: Exploratory data analysis
  • Topic C: AWS storage options and choosing storage


 


Module 4: Data Transformation and Feature Engineering


  • Topic A: Handling incorrect, duplicated, and missing data
  • Topic B: Feature engineering concepts
  • Topic C: Feature selection techniques
  • Topic D: AWS data transformation services
  • Lab 1: Analyze and Prepare Data with Amazon SageMaker Data Wrangler and Amazon EMR
  • Lab 2: Data Processing Using SageMaker Processing and the SageMaker Python SDK


 


Day 2 


Module 5: Choosing a Modeling Approach


  • Topic A: Amazon SageMaker AI built-in algorithms
  • Topic B: Selecting built-in training algorithms
  • Topic C: Amazon SageMaker Autopilot 
  • Topic D: Model selection considerations
  • Topic E: ML cost considerations


 


Module 6: Training Machine Learning (ML) Models


  • Topic A: Model training concepts
  • Topic B: Training models in Amazon SageMaker AI
  • Lab 3: Training a model with Amazon SageMaker AI


 


Module 7: Evaluating and Tuning Machine Learning (ML) models


  • Topic A: Evaluating model performance 
  • Topic B: Techniques to reduce training time
  • Topic C: Hyperparameter tuning techniques
  • Lab 4: Model Tuning and Hyperparameter Optimization with Amazon SageMaker AI


 


Module 8: Model Deployment Strategies 


  • Topic A: Deployment considerations and target options
  • Topic B: Deployment strategies
  • Topic C: Choosing a model inference strategy
  • Topic D: Container and instance types for inference
  • Lab 5: Shifting Traffic A/B


 


Day 3 


Module 9: Securing AWS Machine Learning (ML) Resources


  • Topic A: Access control
  • Topic B: Network access controls for ML resources
  • Topic C: Security considerations for CI/CD pipelines


 


Module 10: Machine Learning Operations (MLOps) and Automated Deployment


  • Topic A: Introduction to MLOps
  • Topic B: Automating testing in CI/CD pipelines
  • Topic C: Continuous delivery services
  • Lab 6: Using Amazon SageMaker Pipelines and the Amazon SageMaker Model Registry with Amazon SageMaker Studio


 


Module 11: Monitoring Model Performance and Data Quality


  • Topic A: Detecting drift in ML models
  • Topic B: SageMaker Model Monitor
  • Topic C: Monitoring for data quality and model quality
  • Topic D: Automated remediation and troubleshooting
  • Lab 7: Monitoring a Model for Data Drift


 


Module 12: Course Wrap-up


 


Requirements


  • Familiarity with basic machine learning concepts
  • Working knowledge of Python programming language and common data science libraries such as NumPy, Pandas, and Scikit-learn
  • Basic understanding of cloud computing concepts and familiarity with AWS
  • Experience with version control systems such as Git (beneficial but not required)
Dauer/zeitlicher Ablauf:
3 Tage
Ziele/Bildungsabschluss:
  • Explaining ML fundamentals and its applications in the AWS Cloud
  • Processing, transforming, and engineering data for ML tasks by using AWS services
  • Selecting appropriate ML algorithms and modeling approaches based on problem requirements and model interpretability
  • Designing and implementing scalable ML pipelines by using AWS services for model training, deployment, and orchestration
  • Creating automated continuous integration and delivery (CI/CD) pipelines for ML workflows
  • Discussing appropriate security measures for ML resources on AWS
  • Implementing monitoring strategies for deployed ML models, including techniques for detecting data drift
Seminarkennung:
42552
Nach unten
Nach oben
Wir setzen Analyse-Cookies ein, um Ihre Zufriedenheit bei der Nutzung unserer Webseite zu verbessern. Diese Cookies werden nicht automatisiert gesetzt. Wenn Sie mit dem Einsatz dieser Cookies einverstanden sind, klicken Sie bitte auf Akzeptieren. Weitere Informationen finden Sie hier.
Akzeptieren Nicht akzeptieren









Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha



Bei der Verarbeitung Ihrer personenbezogenen Daten im Zusammenhang mit der Kontaktfunktion beachten wir die gesetzlichen Bestimmungen. Unsere ausführlichen Datenschutzinformationen finden Sie hier. Bei der Kontakt-Funktion erhobene Daten werden nur an den jeweiligen Anbieter weitergeleitet und sind nötig, damit der Anbieter auf Ihr Anliegen reagieren kann.







Um Spam abzuwehren, geben Sie bitte die Buchstaben auf dem Bild in das Textfeld ein:

captcha